
On the Implementation of a Modi�ed

Sag�Szekeres Quadrature Method�

J� N� Lyness

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne� IL ����� U�S�A�

L� M� Delves

Institute of Advanced Scienti�c Computation

University of Liverpool L�� �BX

England

Abstract

We describe a modi�ed Sag�Szekeres multidimensional quadrature algorithm and discuss

its implementation as a general�purpose library procedure on serial and parallel architectures�

Examples illustrate its e�ectiveness for both smooth and singular integrands�

� Introduction

In the practice of numerical quadrature� many di�erent special�purpose algorithms are available
and are e�cient when used in the appropriate circumstances� We are interested in developing an
algorithm for more general use as a software item in a software library� Speci�cally we seek a general
purpose algorithm that accepts as wide a class of integrands and regions as possible� without grave
compromise of e�ciency� To this end� we have chosen one suitable for N �dimensional integration
over a product region

RN � R�
� �R�

� � ����RN
� �

where each Rj
� stands for one of �a� b	� �a��
���� b	 or �����
� The algorithm that we describe

uses a modi�ed version of the Sag�Szekeres ��
��
 method in each direction� It is e�cient when
the integrand function is regular over RN or when it has integrable singular behavior con�ned to
vertices or edges of this region� This ability to handle edge singularities without special coding
makes it particularly appealing for a numerical library�

�This work was supported in part by the Mathematical� Information� and Computational Sciences Division sub�

program of the O�ce of Computational and Technology Research� U�S� Department of Energy� under Contract

W��������Eng��	� and by the Commission of the European Community within Esprit Project P
�
	� Supernode II�

lyness
mcs�anl�gov� delves
liverpool�ac�uk

March ���	

� One�Dimensional Algorithm for the Finite Interval �����

As a preliminary to constructing a general N �dimensional algorithm� we focus on one dimension
and on the �nite interval ����	� Here we seek an algorithm that will handle an integrable singularity
at x � � or at x � �� The appropriate Gaussian rule is undoubtedly the most e�cient rule known�
However� to implement this requires that a weight function incorporate the singularity� weights
and abscissas depend on the actual weight function� Extrapolation quadrature is marginally less
e�cient and marginally more general than the Gaussian rule� it requires only limited information
about the singularity� Yet even this information� we believe� may not be not normally available to
the applications programmer�

However� a modi�cation of the Sag�Szekeres approach does seem to be promising� Here the
trapezoidal rule is used� but it is applied to a transformed function� The transformation is or may
be the same for all integrands� The resulting rule is e�cient for integrands that are analytic in
����
 and integrable in ����	�

Following Sag�Szekeres ��
��
� we set

��t
 �
�

�
�� � tanh������ t
� ��t

� ����

���t
 �
�

�
���� t
�� � t��
��� tanh������� t
� ��t

�

and set x � ��t
 to e�ect

If �
Z �

�
f�x
dx �

Z �

�
f���t

���t
dt�

We denote the integrand on the right by F �t
� We now apply an m�panel trapezoidal rule� namely�

Q�m�F �
�

m

mX
j��

�F �j�m
 �
�

m

mX
j��

�f���
j

m

���j�m
�

to approximate

IF �
Z �

�
F �t
dt �

Z �

�
f���t

���t
dt � If�

The expression Q�m�F may be treated as a conventional quadrature rule for f�x
 whose abscissas
are ��j�m
 and whose weights are ���j�m
� Many functions ��t
 of form ����
 are suitable� the
one chosen above was used by Sag and Szekeres ��
��
� This rule was later used by Murota and
Iri ��
��
� who called it the TANH rule and noted that it was a variant of the IMT method of
Iri� Moriguti� and Takasawa ��
��
 �see also Davies and Rabinowitz ��
��

� �Takahasi and Mori
��
��
 use the term TANH to refer to a completely di�erent transformation�

Several other choices for ��t
 are described in the literature� All necessarily satisfy

���
 � �� ���
 � � and ���t
 � � for t in ��� �
�

and all suggested to date have ���t
 symmetric about t � ���� Perhaps the earliest is a set due to
Korobov ��
��
� the most recent is a set due to Sidi ��

�
� For these� the functions ���t
 comprise

�

a set of algebraic polynomials and a set of trigonometric polynomials� respectively� For integrands
without singularities� undoubtedly Sidi�s functions are excellent and probably more e�cient than
the ones we have proposed� We have retained the choice ����
 because in some respects it is more
convenient for functions with unbounded singularities at the end point�

Clearly when f�x
 is bounded in a �nite interval ��� �
 and ��t
 is monotonic and di�erentiable�
it follows that F �t
 � f���t

���t
 is also bounded in this interval� When f�x
 has a singularity at
x � �� it may or may not happen that F �t
 has a singularity at t � �� This depends on the natures
of f�x
 and of ��t
� To �x ideas� let us suppose f�x
 � x�� Then we have

F �t
 � ��t
����t
 �
�

� � �

d

dt
��t
��� � �� ���

and we may con�rm that F �t
 is integrable

IF �
Z �

�
F �t
dt �

�

� � �
��t
���

����
�

�
�

�

� � �
� �� ��

and is naturally identical with If � For some values of �� it may happen that F �t
 has a singularity
at t � ��

Theorem ��� For f�x
 � x� and choice ����� for ��t
� we have

F �t
 � ���t�
�exp����t

��� as t approaches � � �

This is straightforward to prove�

It follows that� even though f�x
 is singular at x � �� the natural continuation of F �t
 and
all its derivatives at t � � are zero� Clearly one may omit the function value at t � � in form�
ing the trapezoidal rule sum� Ultimately� the convergence rate of a sequence of trapezoidal rule
approximations is exponential in the number of panels used�

In this case� the corresponding functions of Sidi� while robust� do not produce a sequence that
converges exponentially� This situation is illustrated by the circumstance that for � greater than
but su�ciently close to ��� the limit in the theorem is in�nite when F �t
 is calculated using these
trigonometric polynomials for ���t
�

� The Numerical Stability of the One�Dimensional Algorithm for
Interval �����

The formulas given in Section � appear to be straightforward to implement� In several distinct
places� however� careful programming is required to avoid unnecessary inaccuracy or breakdown
resulting from unexpected over�ow or inconvenient under�ow� Some of the underlying causes for
sensitivity are interrelated� All are connected with function evaluation at or near the integration
interval endpoints� �In the multidimensional extension considered later� this stability problem
occurs in each dimension separately�

�

In the following discussion� it is important to distinguish between the under�ow parameter� 	u�
and the machine accuracy parameter� 	m� We shall illustrate the discussion by setting 	u � ����	

and 	m � ������ This discussion is in the context of a machine with quiet under�ow� That is� left
to itself� any number too small to be represented is simply replaced by zero�

The density of machine�representable numbers plays a key role in quantifying� understanding�
and controlling the numerical instability� Naturally� one tries to arrange the calculation so that the
most sensitive calculations are carried out where this density is greatest� namely near the origin�

In general� the smallest positive machine�representable number is the under�ow parameter� 	u�
Between 	u and �	u are ��	m di�erent machine�representable numbers� In general� when X is a
power of �� there are ��	m machine�representable numbers regularly arranged between X and �X �
This pattern continues until the largest machine�representable number �usually approximately or
exactly ��	u
� The negative machine�representable numbers follow almost exactly the same pattern�

As mentioned earlier� we treat the interval ����	� We term the zero end of this interval the
�sensitive� end� since there we can distinguish numbers very close to each other� this distance
being of order 	u� We term the other end the �insensitive� end� The corresponding distance here is
	m� To help control the calculational error� we introduce the quantities �x � ��x and ���t
 � ����t
�
It turns out that for t in the interval ���
���
� the nearest machine�representable number to ��t

is �� In some cases we can organize the internal coding so that we use ���t
 and avoid ��t
� This
allows a more sensitive calculation� But for t in ���

��
� we �nd ���t
 is represented by zero in the
machine� The end�point problem is mitigated but not removed�

It is a straightforward exercise to program the calculation of ��t
� ���t
 � ����t
� and ���t
 so
that each is available to near machine accuracy� Only one exponential call is required to obtain all
three� As mentioned above� when t � ���� and when t � ��

� either ��t
 or ���t
 is smaller than 	u
and hence cannot be represented in the machine� Normally� such a number would be replaced by
zero� For reasons that will become apparent later� we recommend that these minute numbers be
replaced by 	u� However� when appropriate� we happily allow ���t
 to be replaced by zero� When
t � ���� or t � ��
�� either ��t
 or ���t
 is less than 	m� Note that all these quantities� however
small� are properly calculated to machine accuracy � except� of course� when they are too small
to be represented�

The calculation involves the numerical integration� using the trapezoidal rule� of the integrand
function F �t
 � f���t

���t
� Since ���t
 � � at the endpoints� it is obvious that when f�x
 is
bounded� the endpoint contribution is zero and can be omitted� As shown above� when f�x
 has
an integrable singularity at x � � or x � �� the integrand function f���t

���t
 is zero at t � � and
at t � �� At these values of x� function evaluation of f�x
 is unnecessary�

In theory� the abscissa x � ��t
 is � or � only when t � � or �� otherwise� x � ��t
 in
����
� So� in an ideal world where there is �in�nite�precision arithmetic�� we can safely use the
trapezoidal rule to approximate the integral� simply ignoring the two endpoint function values� In
practice� however� values of ��t
 may appear that are closer to � �or �
 than to any othet machine�
representable number� It is necessary to ensure that� in such cases� these are not replaced in the
machine by � �or �
� If that were to happen and f�x
 happens to have a singularity there� an
over�ow would occur�

�

To obviate this possibility� the quadrature routine should replace ��t
 by maxf��t
� 	ug near
t � � and by minf��t
� ��	mg near t � �� Then it will not ask for a function value of f�x
 precisely
at an endpoint of its integration interval� Naturally� the used�provided procedure from which f�x

is calculated� must not over�ow for any machine�representable number x � ��� �
� It is important
to emphasize this precaution because� while function values at x � � and x � � are not required�
function values at points x exceptionally close to x � � or x � � may well be required�

Corresponding restrictions should be applied independently to ���t
� However� ���t
 should not
be restrained in this way� When this is too small to be represented� it is replaced by zero�

The above remarks cover the situation at t � � and t � �� Next we turn to the situation near
these endpoints� To clarify our ideas� we look at the trapezoidal rule sum

�

m

m��X
j��

�f���j�m

���j�m
	�

For integrands f�x
 that are regular� one may be tempted to omit terms for which ���t
 is less than
the machine accuracy parameter� Doing this� one omits about �� of the integration interval at
each end� If the program omits the corresponding function evaluation� a ��� economy may ensue�
However� in some cases unnecessary inaccuracy could arise for example� if f�x
 were large very
near an endpoint but minuscule elsewhere� In particular� there is no justi�cation for this doubtful
economy when f�x
 has any sort of singular behavior at either endpoint�

To illustrate these remarks� we look at three examples� namely� f�x
 � �� f�x
 � x���	� and
f�x
 � ���x
���	� The exact integrals If are �� �� and �� respectively� We consider the �fty�panel
trapezoidal rule sum �m � ��
� In the �rst two examples we examine the contribution of the three
terms j � �� �� � to this trapezoidal rule sum� This is

���� 	 �f�������

 	 �������
 � f�������

 	 �������
 � f�������

 	 �������

 �

���� 	 �����D� �� 	 f�����D� ��
 � ���
D� �� 	 f�����D� ��
 � ����D� �� 	 f�����D� ��

�

We write this as
w�f� � w�f� � w	f	

with
wj � ����D� ��� ����D� �
� and ����D� ��� ����

respectively�

In the �rst example� f�x
 � �� and the �rst three terms contribute precisely these amounts to
a sum that is approximately �� The �rst two terms� which are comfortably smaller than 	m� have
no practical e�ect on the result� If all three and the corresponding three at the other end of the
interval are ignored� the result may be compromised by an amount ����D����

That was a particularly simple example� The second example� f�x
 � x���	� is quite di�erent�
The three function values involved are not all �� but they are large� They are

fj � ����D � �
� �����D � ��� and ����D � ��� ����

�

respectively� Their respective contributions to the sum are obtained by multiplying them by the
weights in ����
 above� giving

wjfj � ����D� ��� ���
D� �� and ����D� �� ����

respectively� Terms of this size cannot be routinely omitted simply because one of the factors
involved in their evaluation is small� Note that the computer has all these numbers available to
machine accuracy �i�e�� in this example� to twelve decimal places
� To make this description easier
to read� we have written down only the �rst two places in the above discussion�

The third example� f�x
 � ���x
���	� is again di�erent� Because of symmetry� one might have
expected this example to correspond in all signi�cant respects to the previous example� However�
because the singularity is at the end t � �� the situation is much worse� Here the critical points
are the �nal three� We can calculate the weights correctly� these are the same as in ����
 above�
The correct function values f
��j and the correct values of w
��jf
��j are those in ����
 and ����

above� But ��t
 has to be represented in the machine and has to be less than �� The nearest
machine representable number is x � � � 	m� and so the largest value of f�x
 calculable is about
����D��� Hence� instead of function values ����
 we �nd all three to be about ����D��� which are
much too small� The true contributions ����
 to the overall sum are then underestimated� leaving
an overall error of about ����D���

Clearly� a singularity at t � � is unwelcome� The user should� if possible� arrange that the
singularity occurs at the t � � end of this integration interval� possibly reprogramming the integrand
function to exploit the higher density of machine� representable numbers in that neighborhood�
However� as we shall see later� the user need not worry about any singularity induced by the
transformation from an in�nite or semi�in�nite interval� This is taken care of automatically in any
proper implementation�

	 The One�Dimensional Algorithm for Other Intervals

One advantage of our approach is that it can be modi�ed to intervals other than ����	 by means
of an additional transformation of a user�provided function g�y
� This transformation� denoted by
y � ��x
� is chosen so that Z b

a
g�y
dy �

Z �

�
f�x
dx�

Here we allow either or both of a and b to be in�nite but assume� when germane� that b � a�
Naturally there is a wide choice of possible transformations� For our program� we have chosen

y � a � �b� a
x� f�x
 � �b� a
g�a� �b� a
x
� �a� b	

y � a � ��x
x � f�x
 � x��g�a� ��� x
�x
� �a��
 ����

y � b� ��x
x � f�x
 � x��g�b� ��� x
�x
� ���� b	

y � �
��x � �

x � f�x
 � �x�� � ��� x
��

g������ x
� ��x
 �����
�

�

In our implementation� the user provides g�y
� It is clear from the transformations that when jg�y
j
is bounded in �a� b
� then jf�x
j is bounded in ����
� But it is easy to show that when a or b is
�nite� then any singularity of g�y
 at a or b may induce a corresponding singularity of f�x
 at �
or �� Moreover� in general� when the interval is semi��nite or doubly in�nite� one may encounter a
transformation�induced singularity in f�x
 at the end of ����	 which corresponds to in�nity�

In the preceding section� we discussed in some detail the care necessary to deal with a singularity
in f�x
� In the present case� the user provides g�y
 and our program determines f�x
� We have
to arrange that this part of our program provides an integrand function f�x
 thatis �nite for
all machine�representable x � ��� �
� Doing so is not di�cult because the terms that induce the
singularity are x � ��t
 or �x � ��x � ���t
� and these can be determined so long as x or �x exceeds
	u�

For example� on the semi��nite interval �a��
� suppose

g�y
 � ��� � �y � a
�
���

with �
 �� to ensure convergence� This gives rise to

f�x
 � x��g
�
a �

�� x

x

�
�

� x��x�����x� � ��� x
�
����

For noninteger �� this has a singularity at x � �� In the integration of f�x
� the quantity x��

is critical� This quantity is isolated by the program and accurately calculated� The value of

g
�
a � ��x

x

�
for x close to zero is small but is readily calculable and not sensitive to small changes

in y� Thus� the coding of this can safely be left to the user� When the singularity is at the insensitive
end x � �� the term �x is provided by the program and plays the same role as above�

We note that the program for the �nite interval demands that� for all machine�representable
numbers in ����
� the function f�x
 not exceed the highest machine�representable number� To
ensure this� the user must provide a function g�y
 that does not produce over�ow in f�x
 when
f�x
 is calculated using one of ����
�

The user may exploit the result in the following theorem by choosing M near the over�ow
parameter and �capping� the integrand function g�y
 appropriately�

Theorem ��� Let g�y
 satisfy

a� b �nite jg�y
j
 M��b� a
 for all y � �i�

a �nite� b in�nite jg�y
j
 M�� and �y � a
�jg�y
j
 M�� for all y � �ii�

both in�nite jg�y
j
 M��� and y�jg�y
j
 M�� for all y � �iii�

Then jf�x
j
 M for all x � ��� �
�

�

Proof� Part �iii
 may be established as follows� The fourth transformation in ����
 yields

f�x
 �

�
y� �

�

��� x
x

�
g�y
 � F� g�y
� ����

where� using y��� x
x � �x� � we may express F� � F��x
 as a function of x�

�a
 When x �
h
�
	 �

�
	

i
� F��x
 is a convex function symmetric about x � �

� � its minimum in this

interval is F��
�
�
 � � and its maximum F��

�
	
 � F��

�
	
 � ���

� � Using this ����
 and the �rst
inequality in hypothesis �iii
 above� we �nd

jf�x
j � F� g�y

 M for all x �
�

�

�
�
�

�

�
�

�b
 When x � ��� �	
� we exploit the second inequality in hypothesis �iii
 in much the same way�
We set

f�x
 � F�y
�g�y

and �nd F��x
 � F��y
� to be monotonic increasing in this interval� with F���
 � � and

F��
�
	
 � �� Thus�

jf�x
j � F�y
�jg�y
j
 M for all x � ���

�

�

�

The same result for x � ��	 � �
 establishes part �iii
 of the theorem�
Parts �i
 and �ii
� which are simpler� are established in a similar way�

 The Multidimensional Algorithm

The extension of the algorithm to more than one dimension is trivial we use a product trapezoidal
rule with product mapping� There is� however� additional interest in the implementation details�
and we discuss these in the context of a MIMD distributed�memory architecture�

The sums required are product trapezoidal rule sums� In the context of a parallel computer�
one convenient method for evaluating any product sum is using a cyclic distribution of the function
evaluations� We describe this now in a four dimensional setting in a slightly more general context
than we need� The generalization to other dimensions is straightforward�

We consider a product rule of the form

QF �
n�X

j���

n�X
j���

n�X
j���

n�X
j���

F �x�j� � x
�
j� � x

	
j�� x

�
j�
w

�
j�w

�
j�w

	
j�w

�
j� � ����

In our application we ignore boundary points so ni � mi � � and� in each dimension� all weights
are equal so

wk
ji

� ��mk ji � �� �� � � � � ni� k � �� �� �� ��

�

We now reindex this sum� using a single index � de�ned by

� � j� � n�j� � n�n�j	 � n�n�n	j�

 j� � n��j� � n��j	 � n	j�

�

It is straightforward to verify that this mapping is one to one and that � � ��� L	 with L � n�n�n	n��
Given a value of � � ��� L	� one may �nd j�� j�� j	� and j� by successive division� The sum ����
 may
be reexpressed� �rst in the form

QF �
LX
���

F �x�
w�x�
� ����

and then� with any integer p � �� in the form

QF �
pX

q��

Sq �
pX

q��

�
BBBB	

X
��q�mod p�

�����L

F �x�
w�x�

CCCCA � ����

The overall e�ect is that we have partitioned the sum in ����
 into p di�erent and distinct sums�
which may be handled respectively by the p di�erent processors� The number of elements in each
sum Sq is either bL�pc or bL�pc� ��

The interesting aspect of a program to e�ect this is that there is no need for any processor to
be explicitly aware of the values of � involved� All of the processors are initially provided with
�or calculate simultaneously
 a list of weights and abscissas xkjk � w

k
jk
jk � �� �� � � � � nk k � �� �� �� ��

Each processor handles a selection of allowable indices �j�� j�� j	� j�
� that is� a set where each ji is
within limit� namely� ji � ��� ni	�

The program handles an allowable index �j�� j�� j	� j�
 by adding into a running sum the con�
tribution

w�
j�w

�
j�w

	
j�w

�
j�F �x�j� � x

�
j� � x

	
j� � x

�
j�
�

The q�th processor is initialized by being given index �q� �� �� �
� �As long as q � ��� n�	� this is
allowable� If it is not� one applies the procedure described below to transform this index into an
allowable index�

After an allowable index �j�� j�� j	� j�
 has been processed� the next index considered is �j� �
p� j�� j	� j�
� If this is allowable� it is processed immediately� Otherwise� it is transformed into an
allowable index by applying a sequence of transformations� each of the type

Ti

�
ji � ji � n�
ji�� � ji�� � ��

If j� is out of limits� transformation T� is applied as many times as necessary to put j� into limits�
Next T� and then T	 are applied in the same way� Should j� become out of limits �while j�� j�� j	 are
in limits
� the part of the calculation assigned to this processor is complete� The same algorithm
may be described in the following way�

�
 if j� � n�� then j� � j� � n� and j� � j� � �� goto �

�
 if j� � n�� then j� � j� � n� and j	 � j	 � �� goto �

 if j	 � n	� then j	 � j	 � n	 and j� � j� � �� goto

If it �nds j� � n�� the sum is complete and the processor should return its contribution to the �rst
�or a master
 processor or� in some other way� amalgamate the distinct sums�

A program arranged in this way has several �computing virtues�

�� Simplicity Each processor is given an identical program�

�� Adaptability p� n�� n�� n	� etc�� appear as simple parameters�

�� Low Interprocessor Communication Communication is needed only at the start �to assign
the initial point
 and at the end �to assemble the �nal result
�

�� Even Load Balancing The points have been shared as evenly as possible� Each processor
takes a fair share of easy and di�cult regions�

We close this section with some remarks about load balancing� The key to even load balancing
is the elimination of processor wait time� If all function evaluations take an identical time �and
there are many problems in which this is the case
� then arranging even load balancing reduces
simply to seeing that each processor treats� as far as possible� the same number of points� The
scheme described above does this� as would most properly constructed schemes�

When function evaluation times di�er from point to point� a more interesting or challenging
situation arises�

It is convenient to de�ne a di�cult �easy
 point as one where the function takes a longer �shorter

time than average to evaluate� A di�cult �easy
 region is one that contains a preponderance of
di�cult �easy
 points� This depends only on the integrand function� A simple example of an
easy region might be an an edge where one component required in the calculation of the function
value happens to be identically zero� An example of a di�cult region might be an edge where�
exceptionally� a limiting process has to be simulated to evaluate the function� Note that this
depends simply on the time required to make the function evaluation� This is quite distinct from
the concept of di�cult or easy regions in the context of adaptive quadrature� That depends on the
smoothness of the integrand�

The circumstances required for even load balancing are slightly di�erent in a MIMD environ�
ment� where the processors act independently� from the circumstances in a SIMD environment�
where the processors act in lock step� To pinpoint the di�erence� let us suppose that the order in
which the abscissas were treated was entirely random� In a MIMD environment this is desirable�
With luck� each processor would receive the same mix of easy and di�cult points� so each would
have the same amount of work to do and each would �nish at about the same time� during the
process� none have been kept waiting� On the other hand� this random ordering could be one of

��

the worst possible for a SIMD environment� The di�cult points would be randomized too� and
each time slot would contain a mix of di�cult and easy points� Thus a processor apparently lucky
enough to be treating an easy point might well �nd that� when it has �nished this point� it has to
wait until all other processors� some of which may be contemporaneously treating di�cult points�
have also �nished�

Clearly� what is needed for both the MIMD and the SIMD environments is that each processor is
assigned roughly the same number of di�cult points and the same number of easy points� However�
in the SIMD environment� the ordering may be critical while in the MIMD environment� this
ordering is immaterial�

On the other hand� hypothetically� a good situation for a SIMD environment might be one
in which the points were treated strictly in order of di�culty� All processors go slowly when the
di�cult points are being treated and all speed up when they treat the easy ones�

We now return to the scheme described above and see how these di�erent environments react
to a situation in which there exist well de�ned easy and di�cult regions but it is not known a priori
where these are� First� we note that the points of local regions are dispersed among the di�erent
processors� This is precisely what is wanted in both MIMD and SIMD environments�

In addition another e�ect may be helpful in a SIMD environment� Speci�cally� points in the
same locality are being treated to some extent at the same time� To wit� there are roughly �N�p	
sets of p points that are treated simultaneously� Approximately a proportion of �n� � p � �
�n�
of these sets comprise p adjacent points� The time taken for each set is the time taken by the
slowest �which is the most di�cult
 member of that set� Thus� when the di�cult points occur
in well�de�ned local regions� there is a good chance that� to some extent� di�cult points will be
processed at the same time�

� Numerical Examples

The procedure described above has been implemented as a parallel library routine� running on
transputer�based systems� as part of Esprit project P���� Supernode II� �see Plowman ��

�
�
This routine is scheduled to appear in the quadrature section of the Liverpool�NAG Transputer
Software Library� We give here some results obtained using this routine� to demonstrate the rapid
convergence obtained with both smooth and singular integrands� and to demonstrate the routine�s
e�ectiveness on a parallel MIMD architecture�

��� Examples

We consider the following two dimensional problems� taken from Plowman ��

�

��
R 	
�

R�
� x�ydxdy � ln � ��

R�
�

R�
� exp��x� � y�
dxdy � �

�

��
R �
�

R �
�

xp
x��y�

dxdy � �
�

�
ln�
p

� � �
 �
p

�� �
�

��
R�
�

R�
�

p
x � y exp��x� y
dxdy � 	

p
�

�

��

��� Convergence of the Method

The convergence obtained by this method� as the number of function evaluations is increased� is
exponential in nature� This is illustrated in Table ��

In each of these �� examples� the same number of panels� m� was used in each of the two
dimensions� Thus� the number of function evaluations required in each example is �m� �
�� These
results were obtained with four processors using ���bit IEEE arithmetic� Once the machine precision
is approached� the actual error depends slightly on the number of processors� This e�ect is not
limited to a parallel implementation� Naturally� the �nal �gure or two in any result depends on the
actual coding� The last column gives the time taken� in seconds� for Problem � on one processor�
Timings for the other problems are similar to these�

Table �� Absolute error for four problems

m Problem � Problem � Problem � Problem � Time �P��

� ���E��� ��� ���E��� ��
 ����
� ���E��� ���E��� ���E��� ���E��� ����

�� ���E��� ���E��� ���E��� ���E��� ����
�� ���E��� ��
E��� ���E��� ���E��� ����
�� ��
E��� ���E��� ���E��� ���E��� ����

��� ���E��� ���E��� ���E��� ���E��� ����

These results are demonstrably consistent with exponential convergence for Problems � and �
and superexponential convergence for Problems � and ��

��� Parallel Performance

It is no surprise that the method implements well on a parallel distributed�memory architecture�
since multidimensional quadrature methods are in general �embarrassingly parallel�� In Table �
we illustrate this by giving the measured speedup factors

S�p
 � T ��
�T �p
�

where T �n
 is the time required when using n processors� Times were taken on a Transtech T���
system with �� MHz processors and links� the con�guration uses a master!slave paradigm with
T��� master� We give two sets of results� using m � �� and m � ���� respectively� Absolute
timings were given in Table ��

Table �� Speedup factors S�p
 for p slave processors

��

p Problem � Problem � Problem � Problem �

m � ��
� ��� ��� ��� ���
� ��� ��� ��
 ���
� ��� ��� ��
 ���

m � ���
� ��� ��� ��
 ��

� ��� ��� ��� ���
� ��� ��� ��� ���

The results are as expected for �xed m and increasing p� the speedup factor achieved is limited
by the initialization of the library routine rather than by the cost of the �nal collection of partial
sums from each processor� With the dynamic loading mechanism used for the transputer library�
this initialization cost is dominated by the cost of sending the code for the integrand function
to each slave� which takes place when the routine is called� Naturally� this cost is relatively less
signi�cant for larger problems� Indeed� the timings obtained provide an estimate of about ����
seconds for the overheads involved�

� Acknowledgments

The routine used was implemented by Dr� Steve Plowman� we are indebted to him for many lengthy
discussions of implementation details�

��

References

��	 P� J� Davies and P� Rabinowitz ��
��
� Methods of Numerical Integration� �nd edition� Aca�
demic Press� New York ��
��
� pp� ��������

��	 N� M� Korobov ��
��
� Number�Theoretic Methods of Approximate Analysis� GIFL� Moscow
��
��
 �in Russian
�

��	 M� Mori ��
��
� An IMT�Type Double Exponential Formula for Numerical Integration� Pub�
Res� Inst� Math� Sci� Kyoto Univ�� ��� pp� ������
�

��	 M� Iri� S� Moriguti� and Y� Takasawa ��
��
� On a Certain Quadrature Formula� Kokyuroku of
the Res� Inst� for Math� Sci� Kyoto Univ�� �� � pp� ������ �in Japanese
� English translation
in J� Comp� Appl� Math�� ��� pp� �����

��	 K� Murota and M� Iri ��
��
� Parameter Tuning and Repeated Application of the IMT�type
Transformation in Numerical Quadrature� Numer� Math�� �� pp� ��������

��	 S� Plowman ��

�
� Trapezoidal Rule Quadrature Algorithms for MIMD Distributed Memory
Computers	 Part � Implementation� Supernode II Working Paper� Centre for Mathematical
Software Research� University of Liverpool� U�K� ��

�
�

��	 T� W� Sag and G� Szekeres ��
��
� Numerical Evaluation of High�Dimensional Integrals� Math�
Comp�� ��� pp� ��������

��	 H� Takahasi� and M� Mori ��
��
� Quadrature Formulas Obtained by Variable Transformation�
Numer� Math�� ��� pp� ������
�

�
	 A� Sidi ��

�
� A New Variable Transformation for Numerical Integration� in H� Brass and G�
H"ammerlin �editors
 Numerical Integration IV� Birkhauser� Berlin� ISNM ���� pp� ��
�����

��

